Comprehensive molecular mapping of vegetable oil autoxidation products by NMR-based oxylipidomics

14 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lipid oxidation is one the major causes of food deterioration. Current advancement in mechanistic understanding is limited by the lack of high-throughput methods that can simultaneously quantify a wide range of oxidation product classes, such as lipid hydroperoxides, epoxides, ketones, hydroxides, and aldehydes. Here, we introduce an NMR-based ‘oxylipidomics’ platform by providing the annotation of 42 substructures formed during lipid oxidation in vegetable oils. The annotated substructures accounted for respectively 93, 90 and 70 % of the oxidation products of triolein, trilinolein and trilinolenin. The spectral assignments allowed for quantification of lipid oxidation products in vegetable oil at class level (e.g., epoxides) and substructure level (e.g., trans-epoxides) at the commonly available field strength of 14.1 T (600 MHz). We anticipate that our workflow will enable rapid assessment of health risks, unravelling of precursor-sensory relationships, rational design of antioxidant strategies, and in-depth mechanistic studies into food lipid oxidation.

Keywords

oxidation pathway
hydroperoxide
aldehyde
epoxide
ketone
endoperoxide
hydroxide

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.