Hydrogenolysis of haloboranes: from synthesis of hydroboranes to formal hydroboration reactions

18 June 2024, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydroboranes are versatile reagents in synthetic chemistry, but their synthesis relies on energy-intensive processes. Herein, we report a new method for the preparation of hydroboranes from hydrogen and the corresponding haloboranes. Triethylamine (NEt3) form with dialkylchloroboranes a Frustrated Lewis Pair (FLP) able to split H2 and afford the desired hydroborane with ammonium salts. Unreactive haloboranes were unlocked using a catalytic amount of Cy2BCl, enabling the synthesis of commonly used hydroboranes such as pinacolborane or catecholborane. The mechanisms of these reactions have been examined by DFT studies, highlighting the importance of the base selection. Finally, the system's robustness has been evaluated in one-pot B-Cl hydrogenolysis/hydroboration reactions of C=C unsaturated bonds.

Keywords

Hydroborane Synthesis
H2 Activation
Frustrated Lewis Pair
Hydrogenolysis
Boron

Supplementary materials

Title
Description
Actions
Title
Experimental and computational details
Description
Contains synthetic methods, characterisation data, NMR spectra, optimisation of reaction conditions and computational details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.