Abstract
Hydroboranes are versatile reagents in synthetic chemistry, but their synthesis relies on energy-intensive processes. Herein, we report a new method for the preparation of hydroboranes from hydrogen and the corresponding haloboranes. Triethylamine (NEt3) form with dialkylchloroboranes a Frustrated Lewis Pair (FLP) able to split H2 and afford the desired hydroborane with ammonium salts. Unreactive haloboranes were unlocked using a catalytic amount of Cy2BCl, enabling the synthesis of commonly used hydroboranes such as pinacolborane or catecholborane. The mechanisms of these reactions have been examined by DFT studies, highlighting the importance of the base selection. Finally, the system's robustness has been evaluated in one-pot B-Cl hydrogenolysis/hydroboration reactions of C=C unsaturated bonds.
Supplementary materials
Title
Experimental and computational details
Description
Experimental and computational details
Actions