Abstract
As novel corona virus (COVID-19) infections has spread throughout the world, world health organization (WHO) has announced COVID-19 as a pandemic infection. Henceforth investigators are conducting extensive research to find possible therapeutic agents against COVID-19. Main protease (Mpro) and papain-like protease (PLpro) that plays an essential role in processing the polyproteins that are translated from the 2019-nCoV RNA and RNA-dependent RNA polymerase (RdRp) that catalyzes the replication of RNA from RNA template becomes as a potential targets for in silico screening of effective therapeutic compounds to COVID-19. In this study we screened binding affinity of cyanobacterial and food bioactive compounds against 2019-nCoV Mpro, PLpro and RdRp using structure-based molecular docking approach. The results showed that cyanobacterial compounds - 7-Deoxy-Desulfo-Cylindrospermopsin, Calothrixins, Eucapsitrione, Tjipanazoles, Ambiguines, Tolyporphyrins, Phycobilins, Microcyclamides, spumigins, cryptophycins and food bioactive compounds – Geraldone, Asarin, Garbanzole, 1-Acetoxy-8-Hydroxy-1,4,4a,9a-Tetrahydroanthraquinone, Sesamolin, Gallocatechin gallate, Quercitrin, Maximol A, Scutellarien, Isoxanthohumol, Gallocatechin gallate, Quercitrin, Maximol A, Scutellarien, Isoxanthohumol, Seasominol, Citracridione I, Anonaine and Momilactone A as potential binders to the selected SARS-CoV-2 receptors with good dock scores and binding pose. Though, further in vitro and/or in vivo research is required to validate the docking results.