Abstract
Tumor hypoxia is associated with therapy resistance and poor patient prognosis. Hypoxia-activated prodrugs, designed to selectively target hypoxic cells while sparing normal tissue, represent a promising treatment strategy. We report the pre-clinical efficacy of 1-methyl-2-nitroimidazole panobinostat (NI-Pano, CH-03), a novel bioreductive version of the clinically used lysine deacetylase inhibitor, panobinostat. NI-Pano was stable in normoxic (21% oxygen) conditions and underwent NADPH-CYP-mediated enzymatic bioreduction to release panobinostat in hypoxia (<0.1% oxygen). Treatment of cells grown in both 2D and 3D with NI-Pano increased acetylation of histone H3 at lysine 9, induced apoptosis and decreased clonogenic survival. Importantly, NI-Pano exhibited growth delay effects as a single agent in tumor xenografts. Pharmacokinetic analysis confirmed the presence of sub- micromolar concentrations of panobinostat in hypoxic mouse xenografts, but not in circulating plasma or kidneys. Together, our preclinical results provide a strong mechanistic rationale for the clinical development of NI-Pano for selective targeting of hypoxic tumors.
Supplementary materials
Title
Skwarska, Calder et al FIGURES
Description
Actions
Title
Skwarska, Calder et al SI
Description
Actions