Abstract
The dihydroazulene/vinylheptafulvene (DHA/VHF) thermocouple is a promising candidate for thermal heat batteries that absorb and store solar energy as chemical energy without the need for insulation. However, in order to be viable the energy storage capacity and lifetime of the high energy form (i.e. the free energy barrier to the back reaction) of the canonical parent compound must be increased significantly to be of practical use. We use semiempirical quantum chemical methods, machine learning, and density func- tional theory to virtually screen over 230 billion substituted DHA molecules to identify promising candidates. We identify a molecule with a predicted energy density of 0.38 kJ/g, which is significantly larger than the 0.14 kJ/g computed for the parent compound. The free energy barrier to the back reaction is 11 kJ/mol higher than the parent com- pound, which should correspond to a half-life of about 10 days - 4 months. This is considerably longer than the 3-39 hours (depending on solvent) observed for the parent compound and sufficiently long for many practical applications. Our paper makes two main important contributions: 1) a novel and generally applicable methodological approach that makes screening of huge libraries for properties involving chemical reactivity with modest computational resources, and 2) a clear demonstration that the storage capacity of the DHA/VHF thermocouple cannot be increased to >0.5 kJ/g by combining simple substituents.