Iridium-Catalyzed Silylation of C-H bonds in Unactivated Arenes: A Sterically-Encumbered Phenanthroline Ligand Accelerates Catalysis Enabling New Reactivity

21 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report a new system for the silylation of aryl C-H bonds. The combination of [Ir(cod)(OMe)]2 and 2,9-Me2-phenanthroline (2,9-Me2phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H2 byproduct is shown to limit the silylation of aryl C-H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me2phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C-H bond is reversible and that the higher rates observed with the 2,9-Me2phen ligand is due to a more thermodynamically favorable oxidative addition of aryl C-H bonds.

Keywords

C-H Activation
Silylation
Arene Functionalization
Iridium
Catalysis

Supplementary materials

Title
Description
Actions
Title
Karmel Chen Hartwig SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.