Recoverable Aggregate-Rich Liquefied Gas Electrolytes for Enabling High-Voltage Lithium Metal Batteries

25 April 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

High-energy density, improved safety, temperature resilience, and sustainability are desirable yet rarely simultaneously achieved properties in lithium-battery electrolytes. In this work, we present an aggregate-rich electrolyte that leverages the complementary features of ionic liquids and liquefied gas solvents, achieving a high conductivity of 17.7 mS/cm at room temperature. The aggregate-rich solvation chemistry and enhanced fluidity result in superior performance of 20 µm Li/NMC811 full cell batteries with 90.41% capacity retention at 4.4 V, 80% capacity retention after 150 cycles, and enhanced low-temperature compatibility till -60 ℃. Additionally, we demonstrate a conceptual workflow for recovering individual electrolyte components, contributing to circularity of batteries. This work provides a pathway to sustainable, temperature-resilient high-voltage (> 4.4 V) lithium-metal batteries that maintain state-of-the-art electrochemical performance, potentially advancing the development of next-generation energy storage systems.

Keywords

High Voltage
Li Metal Batteries
Liquefied Gas Electrolytes
Ionic liquids
Recovery

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary information supporting the main text
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.