Abstract
In recent years, Bayesian optimization has gained increasing interest as a tool for reaction optimization. Here we use Bayesian optimization in a reaction discovery fashion by treating the glycosylation reaction class as a black box function. This provides access to new areas of the glycosylation reaction space and leads to the discovery of novel stereoselective glycosylation methodologies, where stereoselectivity can be directed by the addition of lithium salts in interplay with other reaction conditions. Black box functions are inherently difficult to interpret, but we show how partial dependence plots can be used to infer trends from the obtained data in a similar fashion to the commonly used one-variable-at-time approach.
Supplementary materials
Title
Supporting Information
Description
Experimental and NMR spectra
Actions
Title
Optimization data
Description
Raw data from optimization campaigns
Actions