Fluoride Enhances Alcohol Binding within a Trigonal-Prismatic Metal-Organic Capsule

02 April 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Herein we utilize the binding of fluoride to boron atoms to functionalize the interior of a boron-containing trigonal prismatic capsule that incorporates two triangular and three rectangular ligands, enabling the tuning of its guest binding properties. The methyl groups of the triangular ligands guide the rectangular ligands to adopt a ‘landscape’ orientation to avoid steric hindrance. This small structural change gives rise to an enlarged interior cavity volume for guest encapsulation, as compared with a previously-reported trigonal prismatic capsule, where the same rectangular ligand took a ‘portrait’ orientation with a non-methylated triangular ligand of similar size. The methylated triangular ligand contains a boron core, which can bind fluoride ions that point inward. These bound fluorides serve as hydrogen bond acceptors, which increases the affinity of the capsule for hydrogen-bond-donating alcohols, which are bound in preference to ketones of similar sizes. Moreover, this boron-containing trigonal prism selectively binds perrhenate over perchlorate, while fluoride binding modulates the cavity charge, leading to perrhenate ejection. These and similar endo-functionalized capsules may thus be of use in the fields of molecular recognition and separation.

Keywords

Self-assembly
Metal-organic cages
Host-guest chemistry
Post-assembly modification
Endo-functionalization

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.