Abstract
In recent years, generative deep learning has emerged as a transformative approach in drug design, promising to explore the vast chemical space and generate novel molecules with desired biological properties. This perspective examines the challenges and opportunities of applying generative models to drug discovery, focusing on the intricate tasks related to molecule generation, evaluation and prioritization. Central to this process is navigating conflicting information from diverse sources – balancing chemical diversity, synthesizability, and bioactivity. We discuss the current state of generative methods, their optimization, and the critical need for robust evaluation protocols. By mapping this evolving landscape, we outline key building blocks, inherent dilemmas, and future directions in the journey to fully harness generative deep learning in the ‘chemical odyssey’ of drug design.