Reversibly photocontrolled polyacrylamide hydrogels for mechanobiology

13 February 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the development of polyacrylamide hydrogels with photoswitchable stiffness using solely visible light and their application to cell culture. We have previously shown that azobenzenes can control the binding constants of dynamic covalent boronic ester bonds (Chem. Sci. 2018, 9, 5987; J. Am. Chem. Soc. 2020, 42, 19969). Here we show that these photoswitchable dynamic bonds can be incorporated into polyacrylamide hydrogels that are stable for at least 10 days in buffer without changes in stiffness or photoresponse. Reversible stiffening and softening are achieved with green and blue irradiation, respectively. We prepared soft (877 ± 79 Pa) and stiff (8.4 ± 0.3 kPa) hydrogels that undergo photoreversible changes in modulus over at least 3 light irradiation cycles. In vitro studies show that the hydrogels are nontoxic to HepG2 cells. The cells undergo the expected changes in morphology, actin stress fiber formation, and Yes-associated protein (YAP) subcellular localization upon stiffening and softening the hydrogel substrate with visible light. These results validate the suitability of our visible-light-controlled hydrogel as a versatile platform for cellular mechanotransduction studies.

Keywords

mechanobiology
light-responsive materials
synthetic extracellular matrix

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Synthetic schemes, quantification of photoswitch loss, additional rheology data, additional cell culture data, NMR spectra
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.