Theoretical Analysis of Bivalent Binding Avidity and Kinetics: Implications for DNA-Encoded Libraries

27 January 2025, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study presents a theoretical framework for understanding the binding behavior of bivalent molecules—entities with two linked ligands—to immobilized targets. Bivalent molecules demonstrate increased binding compared to monovalent counterparts due to an avidity effect arising from the enhanced local concentration of the second ligand upon the first ligand's attachment. Our findings indicate that a shorter tether between ligands increases equilibrium bivalent binding, provided the short tether can span adjacent binding sites without strain. However, shorter tethers may also prolong the search for closely spaced targets, delaying equilibrium to an impractical degree. We propose a theoretical model to evaluate the equilibrium and kinetic parameters of bivalent binding, to enable optimal design of bivalent DNA-Encoded Libraries, and to effect highly efficient DNA-Encoded library (DEL) selection processes.

Keywords

DNA Encoded Libraries
DNA Encoded Chemical Libraries
Encoded Library Technology
in vitro evolution
library selection
library panning
affinity selection
avidity
bivalency
polyvalency

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.