Abstract
This study explores the use of lateral flow assays (LFAs), recognized for their simplicity and ease-of-use, as a tool for characterizing nanoparticles functionalized with various biomolecules (e.g., proteins, antibodies and nucleic acids). A half-strip model system was developed using ovalbumin (OVA) conjugated to gold nanoparticles (AuNPs). The characterization results obtained with LFAs were compared to those from traditional methods such as infrared spectroscopy and fluorescence labelling. The advantages of LFAs in characterizing such conjugated nanosystems were clearly demonstrated. The use of half-strip assays could not only confirm the presence of OVA on AuNPs but also enable the quantification of OVA bound per nanoparticle, offering a rapid and quantitative characterization method. Additionally, the assay showcased its versatility, as it was successfully applied to optimize the covalent coupling conditions of OVA on AuNPs, as well as to differentiate between covalently bound and adsorbed proteins. Furthermore, LFAs were employed to detect antibodies on functionalized nanoparticles, optimize their coupling to a newly developed organic coating, and confirm both the grafting of nucleic acids onto the surface and their pairing with complementary strands. These findings underscore the remarkable adaptability of LFAs for characterizing diverse nanoconjugates. Overall, LFAs stand out as a versatile and accessible tool for characterizing complex bioconjugated nanosystems, making them highly suitable for rapid Quality Control (QC) analysis and bioconjugation optimization.