Binding mechanism of adenylate kinase-specific monobodies

14 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Monobody, an antibody-mimetic protein, regulates enzyme functions via protein-protein interactions. This study examines the binding mechanisms of monobodies for adenylate kinase (Adk), focusing on thermodynamics and structural aspects. The calorimetric and X-ray crystallographic analyses for CL-1, a monobody specific to the CLOSED form of Adk, showed that CL-1 binds to the CORE domain in an enthalpy-driven manner, forming hydrogen bonds and a cation-π interaction at the interface with Adk. In contrast, OP-4, an OPEN-form-specific monobody, exhibited entropy-driven binding. The 1H-15N 2D nuclear magnetic resonance (NMR) and 31P-NMR studies showed the conformational perturbation to Adk by OP-4, while substrate access remains intact. The different thermodynamic and structural effects between CL-1 and OP-4 highlight the diversified binding mechanisms in monobodies.

Keywords

monobody
adenylate kinase
conformational change
ITC
X-ray crystallograph
NMR

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Figs. S1-S3; Tables 1 and 2
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.