Unveiling the Dance of Molecules: Ro-Vibrational Dynamics of Molecules under Intense Illumination at Complex Plasmonic Interfaces

05 December 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Understanding the quantum dynamics of strongly coupled molecule-cavity systems remains a significant challenge in molecular polaritonics. This work develops a comprehensive self-consistent model simulating electromagnetic interactions of diatomic molecules with quantum ro-vibrational degrees of freedom in resonant optical cavities. The approach employs an efficient numerical methodology to solve coupled Schrodinger-Maxwell equations in real space-time, enabling three-dimensional simulations through a novel molecular mapping technique. The study investigates relaxation dynamics of an ensemble of molecules following intense resonant pump excitation in Fabry-Perot cavities and at three-dimensional plasmonic metasurfaces. The simulations reveal dramatically modified relaxation pathways inside cavities compared to free space, characterized by persistent molecular alignment arising from cavity-induced rotational pumping. They also indicate the presence of a previously unreported relaxation stabilization mechanism driven by dephasing of the collective molecular-cavity mode. Additionally, the study demonstrates that strong molecular coupling significantly modifies the circular dichroism spectra of chiral metasurfaces, suggesting new opportunities for controlling light-matter interactions in quantum optical systems.

Keywords

polaritonic chemistry
mestasurface
strong coupling
alignment
Maxwell-Schrodinger

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.