Predicting resistance to small molecule kinase inhibitors

15 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Drug resistance is a critical challenge in treating diseases like cancer and infectious disease. This study presents a novel computational workflow for predicting on-target resistance mutations to small molecule inhibitors (SMIs). The approach integrates genetic models with alchemical free energy perturbation (FEP+) calculations to identify likely resistance mutations. Specifically, a genetic model, RECODE, leverages cancer-specific mutation patterns to prioritize probable amino acid changes. Physics-based calculations assess the impact of these mutations on protein stability, endogenous substrate binding, and inhibitor binding. We apply this approach retrospectively to gefitinib and osimertinib, two clinical epidermal growth factor receptor (EGFR) inhibitors used to treat non-small cell lung cancer (NSCLC). Among hundreds of possible mutations, the pipeline accurately predicted 4 out of 11 and 7 out of 19 known binding site mutations for gefitinib and osimertinib, respectively, including the clinically relevant T790M and C797S resistance mutations. This study demonstrates the potential of integrating genetic models and physics-based calculations to predict SMI resistance mutations. This approach can be applied to other kinases and target classes, potentially enabling the design of next-generation inhibitors with improved durability of response in patients.

Keywords

kinase
drug discovery
computational chemistry
fep
drug resistance
small molecules

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.