A facile route to plastic inorganic electrolytes for all-solid state batteries based on molecular design

15 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Solid-state lithium batteries are on the threshold of commercialization as an alternative to liquid electrolyte batteries. Glassy or amorphous solid electrolytes could bring crucial benefits, but their lack of periodicity impedes structure-derived material design. Here, we report an approach for glassy electrolyte design based on well-defined lithium metal oxychloride linear oligomers. By packing these oligomers formed by oxygen-bridged chloroaluminates, a glassy solid model is constructed. Li ions in mixed-anion coordination with distorted polyhedra favor good lithium conductivity (1.3 mS.cm-1 at 30 °C). The frustrated Li-ion geometry and non-crystallinity promote conformational dynamics of the oligomer backbone that generates mechanical plasticity. Ab-initio molecular dynamics simulations depict the conformational motion that resembles that of organic molecules. Our all-solid-state battery based on this solid electrolyte shows exceptional long term electrochemical stability with a high-nickel NCM cathode. This work shows the impact of targeted structure models for rational design of glassy plastic electrolytes.

Keywords

Solid state electrolyte
Plastic inorganic electrolyte
Lithium aluminum oxychloride
Oligomeric solid electrolyte
Glassy state electrolyte

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.