An atomically precise Pt17 nanocluster: their electronic structure and high activity for a hydrogen evolution reaction

14 November 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Pt nanoclusters (Pt NCs) approximately 1 nm in size show potential as catalysts owing to their large specific surface areas and unique electronic structures, which are influenced by quantum size effects. However, synthesizing Pt NCs with atomic precision under ambient conditions remains challenging, with [Pt17(CO)12(PPh3)8]z (z = 1+ or 2+; CO = carbon monoxide; PPh3 = triphenylphosphine) being the only current example of such a NC. It exhibits extraordinary stability, and its electronic structure and catalytic utility in a range of reactions are topics of widespread interest. In this study, we reveal its electronic structure and explore its catalytic activity in the hydrogen evolution reaction (HER). Our findings revealed that [Pt17(CO)12(PPh3)8]z possesses a discrete electronic structure, with the HOMO and LUMO primarily constituted by the s, p, and d orbitals of Pt; that a Pt17 NC-supported carbon-black catalyst (Pt17/CB) achieves 3.59-times the HER mass activity of a commercially available Pt/CB catalyst; and that the optimal electronic structure of the surface Pt atoms in Pt17/CB significantly enhances its HER activity. These insights underscore the potential of leveraging atomically precise Pt NCs in the design and development of highly active electrocatalysts for water splitting.

Keywords

metal cluster
platinum
HER

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.