Abstract
Two-dimensional (2D) layered metal-organic frameworks
(MOFs) are gaining attention due to their unique
structural and electronic properties with promising applications in compact electronic device fabrication. Long-time and large-scale molecular dynamics simulation of these materials can enhance and expedite the mapping out of their structure-property-function relationships for these applications. To make such simulations more feasible, herein, we construct a high-dimensional committee neural network potential (CNNP) for archetypal 2D MOFs Ni3(HIB)2 and Ni3(HITP)2 where HIB=hexaiminobenzene and HITP=hexaiminotriphenylene. We harness the power of active learning and committee neural networks to obtain a CNNP model using only hundreds of snapshots from ab initio molecular dynamics (AIMD) trajectories. The developed CNNP models allow for simulations of
thousands of atoms over extended timescales, which is typically unfeasible with AIMD simulations, while maintaining the accuracy of the reference data. Our stable MD simulations based on the developed CNNP model reveal the flexible nature of the studied 2D MOFs at room temperature, including puckered layers, as opposed to the planar ones from 0 K electronic structure calculations. Furthermore, our model demonstrates transferability between bulk and monolayers, as well as different
organic linkers. As the first model of its kind, we show that
the high-dimensional CNNP models could be a reliable and
effective approach for future studies on 2D MOFs.
Supplementary materials
Title
Supporting Information for : Machine Learning Committee Neural Network Potential Energy Surfaces for Two-Dimensional Metal-Organic Frameworks"
Description
The details of the Behler-Parrinello neural network architecture, energy and temperature changes during system equilibration, force RMSE tables for various systems, and figures related to model transferability are available in the Supporting Information.
Actions