Towards a Universal Design Principle for Low-Hysteresis High-Valent Redox in Battery Cathodes: Synergizing Cationic Ordered Vacancies with Tunable Metal-Ligand Hybridization

25 October 2024, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Sodium-ion batteries have the potential to meet the growing demand for energy storage due to their low costs stemming from natural resource abundances, but their cathode energy densities must be improved to be comparable to those of lithium-ion batteries. One strategy is accessing high voltage capacity through high-valent redox reactions. Such reactions usually cause instability in cathode materials, but Na2Mn3O7 (NMO) has demonstrated excellent performance and reversibility in the high-valent regime due to its unique lattice structure with ordered Mn vacancies. This work expands the universality of the ordered vacancy as a design principle and increases the material candidates with such exceptional electrochemical behavior. Our approach involves synergizing cationic ordered vacancies with tunable metal-ligand hybridization through partial metal substitution. In particular, we successfully incorporated Fe3+ for Mn4+ in NMO to make Na2.25Mn2.75Fe0.25O7 and achieved improved high-valent redox behavior. Fe substitution leads to larger specific capacities (171 vs 159 mAh/g first cycle), enhanced cycle stability (97 vs 60 mAh/g after 50 cycles), and superior rate performance. This study lays the foundation for developing new cathode materials with stable high-valent redox through substitution of redox-active transition metals by employing cationic ordered vacancies and partial transition metal substitution as design principles in tandem.

Keywords

ordered vacancy
layered transition metal oxide
high-valent redox
sodium-ion battery
cathode

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Supplemental figures and experimental descriptions.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.