Abstract
Various theoretical approaches, including big data and high-throughput screening techniques, have been explored in developing new materials due to their significant potential time-saving advantages. However, it remains a significant challenge to experimentally realize new materials that are predicted. In this study, we propose a novel materials design strategy that utilizes machine-learning (ML) techniques to predict new porous materials that show promise for hydrogen storage and are likely to be feasible to synthesize. By leveraging ML techniques and metal−organic framework (MOF) databases, we are able to predict the synthesizability of MOF structures. This is evidenced by the successful synthesis of a new vanadium-based MOF that exhibits excellent performance for cryogenic H2 storage. Notably, the total gravimetric and volumetric H2 uptakes are as high as 9.0 wt % and 50.0 g/L at 77 K and 150 bar. This ML-assisted materials design offers an efficient and promising approach for developing hydrogen storage materials.
Supplementary materials
Title
SI
Description
Experimental and theoretical supporting data
Actions