Thermally immobilized cellulose acetate butyrate on silica particles as stationary phase for high-performance liquid chromatography

23 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Reversed-phase liquid chromatography is the most widely used analytical technique nowadays. However, it generates a large volume of toxic organic residues and presents poor separations of small polar molecules in traditional stationary phases. In this work, cellulose acetate butyrate was synthesized and used as a reversed-phase coating for separating compounds using highly aqueous mobile phases, reducing organic solvent consumption and minimizing the supra-cited problems. Cellulose acetate butyrate presented a degree of substitution of 0.65 (±0.05) by 1H nuclear magnetic resonance, resulting in hydrophilic and hydrophobic groups in the polymer. The stationary phases were characterized physicochemically by infrared spectroscopy, indicating the polymer attachment on the silica surface with 180 m2 g-1 of surface area and 22 nm of mean pore size. The stationary phase was column-packed and chromatographically characterized by separating the Tanaka mixtures. These separations occurred in reversed-phase mode with hydrophobic and hydrophilic interactions related to the acetate/butyrate and hydroxyl groups from cellulose derivative. The stationary phase showed unique selectivity for separating small polar molecules with 90 % water in mobile phases. Cellulose acetate butyrate stationary phase can potentially separate polar compounds requiring high water contents, making reversed-phase liquid chromatography closer to the Principles of Green Chemistry.

Keywords

Cellulose acetate butyrate
green liquid chromatography
highly aqueous mobile phase
reversed-phase chromatography

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.