Fabrication of Low-Cost, High-Resolution Open Capillary Microfluidics towards Self-Sustaining, Long-Term Hydration of Engineered Living Materials

10 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Engineered living materials (ELMs) are an emerging class of biohybrid materials that have shown great promise with advanced capabilities unachievable by conventional materials. However, application of ELMs outside of the laboratory has been limited due to the need for periodic media replenishment or complete media immersion. We herein demonstrated the integration of capillary microfluidics for the autonomous and pump-free hydration of ELM hydrogels. We optimized 3D printing parameters, including exposure time and build plate lift and retract distances, to obtain microchannel dimensions capable of spontaneous capillary flow using a low-cost liquid crystal display stereolithographic apparatus (LCD-SLA) 3D printer and two hydrogel resins that are suitable for ELMs. Microchannel dimensions were accurate with ≤ 10% deviation between designed and measured widths and precise with coefficients of variation (CVs) <5% for microchannels ≥ 206.4 μm. We demonstrated proof-of-concept spontaneous capillary flow in 3D printed microfluidic devices using dye-incorporated lysogeny broth (LB). Snapshots of the devices captured up to 24 hours showed the diffusion of dye-incorporated LB throughout the bulk material. Through this proof-of-concept study, we have showcased the feasibility of integrating capillary microfluidics with ELMs for the autonomous and pump-free flow of fluids towards self-sustaining and long-term hydration.

Keywords

engineered living materials
capillary microfluidics
3D printing

Supplementary materials

Title
Description
Actions
Title
Fabrication of Low-Cost, High-Resolution Open Capillary Microfluidics towards Self-Sustaining, Long-Term Hydration of Engineered Living Materials_SI
Description
Supplementary figures and table for Fabrication of Low-Cost, High-Resolution Open Capillary Microfluidics towards Self-Sustaining, Long-Term Hydration of Engineered Living Materials
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.