Synthetic control over lattice strain in trimetallic AuCu-core Pt-shell nanoparticles

09 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Core-shell nanoparticles can exhibit strongly enhanced performances in electro-, photo- and thermal catalysis. Lattice strain plays a key role in this and is induced by the mismatch between the crystal structure of the core and the shell met-al. However, investigating the impact of lattice strain has been challenging due to the lack of a material system in which lattice strain can be controlled systematically, hampering further progress in the field of core-shell catalysis. In this work, we achieve such a core-shell nanoparticle system through the colloidal synthesis of trimetallic Pt-shell Au1-xCux-core nanoparticles. Our seed-mediated growth methodology yields well-defined Au1-xCux-cores, tunable in composition from 0 at-% Cu to 77 at-% Cu, and monodisperse in size. Subsequent overgrowth results in uniform, epitaxially grown Pt-shells with a controlled thickness of ~3 atomic layers. By employing a multi-technique characterization strategy combining X-ray diffraction, electron diffraction and aberration corrected electron microscopy, we unravel the atomic structure of the trimetallic system on a single nanoparticle-, ensemble- and bulk scale level, and we unambiguously demonstrate the controlled variation of strain in the Pt-shell from -3.62 % compressive-, to +3.79 % tensile strain, while retaining full control over all other structural characteristics of the system.

Keywords

core-shell nanoparticles
trimetallic
platinum
gold
copper
strain
electron microscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.