AGDIFF: Attention-Enhanced Diffusion for Molecular Geometry Prediction

08 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Accurate prediction of molecular geometries is crucial for drug discovery and materials science. Existing fast conformer prediction algorithms often rely on approximate empirical energy functions, resulting in low accuracy. More accurate methods like ab initio molecular dynamics and Markov chain Monte Carlo can be computationally expensive due to the need for evaluating quantum mechanical energy functions. To address this, we introduce AGDIFF, a novel machine learning framework that utilizes diffusion models for efficient and accurate molecular structure prediction. AGDIFF extends previous models (such as GeoDiff) by enhancing the global, local, and edge encoders with attention mechanisms, an improved SchNet architecture, batch normalization, and feature expansion techniques. AGDIFF outperforms GeoDiff on both the GEOM-QM9 and GEOM-Drugs datasets. For GEOM-QM9, with a threshold (δ) of 0.5 Å, AGDIFF achieves a mean COV-R of 93.08% and a mean MAT-R of 0.1965 Å. On the more complex GEOM-Drugs dataset, using δ = 1.25 Å, AGDIFF attains a median COV-R of 100.00% and a mean MAT-R of 0.8237 Å. These findings demonstrate AGDIFF's potential to advance molecular modeling techniques, enabling more efficient and accurate prediction of molecular geometries, thus contributing to computational chemistry, drug discovery, and materials design. \url{https://github.com/ADicksonLab/AGDIFF}

Keywords

diffusion models
conformer
generative
machine learning
structure
GNN
graph neural network
attention

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.