Protein-protein interaction and conformational change in the alpha-helical membrane transporter BtuCD-F in the native cellular envelope

08 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Alpha-helical membrane proteins perform numerous critical functions essential for the survival of living organisms. Traditionally, these proteins are extracted from membranes using detergent solubilization and reconstitution into liposomes or nanodiscs. However, these processes often obscure the effects of nanoconfinement and the native environment on the structure and conformational heterogeneity of the target protein. We demonstrate that pulsed dipolar electron spin resonance spectroscopy, combined with the Gd3+-nitroxide spin pair, enables the selective observation of the vitamin B12 importer BtuCD-F in its native cellular envelope. Despite the high levels of non-specific labeling in the envelope, this orthogonal approach combined with the long phase-memory time for the Gd3+ spin enables the observation of the target protein complex at a few micromolar concentrations with high resolution. In the native envelope, vitamin B12 induces a distinct conformational shift at the BtuCD-BtuF interface, which is not observed in the micelles. This approach offers a general strategy for investigating protein-protein and protein-ligand/drug interactions and conformational changes of the alpha-helical membrane proteins in their native envelope context.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.