Molecular Engineering of Emissive Molecular Qubits Based on Spin-Correlated Radical Pairs

08 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Spin chemistry of photogenerated spin-correlated radical pairs (SCRPs) offers a practical approach to control chemical reactions and molecular emissions using weak magnetic fields. This capability to harness magnetic field effects (MFEs) paves the way for developing SCRPs-based molecular qubits. Here, we introduce a new series of donor-chiral bridge-acceptor (D-χ-A) molecules that demonstrate significant MFEs on fluorescence intensity and lifetime in solution at room temperature – critical for quantum sensing. By precisely tuning the donor site through torsional locking, distance extension, and planarization, we achieved remarkable control over key quantum properties, including field-response range and linewidth. In the most responsive systems, emission lifetimes increased by over 200%, and total emission intensity was modulated by up to 30%. This level of tunability, and rational design principle of optically addressable molecular qubits, represents a major leap toward functional synthetic molecular qubits, advancing the field of molecular quantum technologies.

Keywords

Quantum Information Science
Molecular Qubits
Spin Chemistry

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Figures, Tables, and Notes.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.