Synthetic intracellular nanostructures enhance cytotoxic T cell function via assembly-driven chemical engineering

01 October 2024, Version 1

Abstract

Nature achieves diverse biological functions through structure formation. Inspired by the controlled formation of polypeptide nanostructures in cells, synthetic methods have been developed to assemble artificial nanostructures and organelle-like compartments within living cells. While these synthetic intracellular assemblies have mostly been used to disrupt cellular processes, their potential to induce a gain of function within cells remains unexplored. Here, we introduce redox-sensitive isopeptides that transform into self-assembling linear peptides inside human cytotoxic T cells in response to intracellular levels of glutathione. The in situ formation of synthetic peptide nanostructures in cytotoxic T cells leads to cellular stiffening, establishing a direct interface between biochemically driven peptide assembly and mechanobiological effects. This change in biophysical properties, along with increased phosphorylation of signaling proteins associated with T cell activation, correlates with a significant enhancement in the efficacy of cytotoxic T cells to eliminate cancer cells. Our findings elucidate the cellular impact of synthetic peptide nanostructures assembled within living cytotoxic T cells and demonstrate their ability to modulate and enhance effector immune cell responses.

Keywords

T cells
Intracellular nanostructures
Peptide self-assembly

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials and methods, supporting figures for the manuscript
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.