bis(trifluoromethyl)-carborhodamines for live cell imaging

03 October 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Synthetic fluorophores built on a classic rhodamine scaffold are essential for modern microscopy. An attractive feature of synthetic fluorophores is their potential to access long wavelength excitation and emission profiles (>650 nm) that are difficult to achieve through genetically encoded methods like fluorescent proteins. Here, we present a new strategy to achieve excitation and emission above 650 nm: bis(trifluoromethyl)carborhodamine dyes, or BF dyes. In BF dyes, the geminal methyl groups of carborhodamines are replaced with trifluoromethyl (CF3) groups. This accomplishes two things. First, CF3 groups substantially red shift in the optical profile by over 90 nm compared to classic, oxygen-bridged rhodamine dyes, resulting in a dye framework with excitation and emission profiles >650 nm and high brightness (extinction coefficient >140,000 M-1cm-1 and fluorescent quantum yield of 33%). Second, CF3 groups render BF dyes fluorogenic, by shifting the position of the open-closed equilibrium of the colorless lactone and colored zwitterion form, resulting in up to 30-fold improvement in fluorogenicity compared to silicon-bridged rhodamines. In this paper, we present the design and computational analysis of BF dyes; synthetic studies to access over a dozen new BF dyes through a unique, late-stage functionalization strategy; spectra characterization; and applications in advanced fluorescence microscopy including no-wash intracellular labeling, functional imaging with chemigenetic indicators, and single molecule tracking in living cells. Together, this report shows that bis(trifluoromethyl)carborhodamine dyes provide a complementary approach to achieving long-wavelength, fluorogenic dyes for live cell microscopy that does not rely on dimethyl silicon rhodamines.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.