Uranyl Fluorescence in Acidic Solution: Quenching Effects by Tetramethylammonium (TMA+)

24 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The quenching of uranyl luminescence by various cation species was studied in aqueous media at low pH. Solutions with different nitrate salts, held at constant uranyl nitrate, nitric acid, and ion concentration, were tested to examine the quenching effects of the cations from the nitrate salts. Alkali metal (Li+, Na+, Rb+) and quaternary ammonium cations (NH4+, (CH3)4N+ (TMA+), (C2H5)4N+ (TEA+) were investigated. Solutions containing TMA+ reduced the lifetime of uranyl fluorescence significantly more than the other cations. Uranyl emission spectra also showed that TMA+ increased the complex formation between uranyl and nitrate ions. Fluorescence decay lifetime measurements for most solutions yielded values between 1.4–1.9 µs at 20 C, while 1.8 M TMA+ reduced the lifetime of uranyl fluorescence to 0.6 µs. Decay rate versus concentration data (Stern-Volmer plots) indicated a dynamic quenching process with increasing fluorescence decay rates at higher cation concentrations for Li+, TMA+, and TEA+. The temperature dependencies of the decay rates and the kinetics in D2O were also examined.

Keywords

Fluorescence
Quenching
Uranium

Supplementary materials

Title
Description
Actions
Title
Supporting Data
Description
The supplementary materials contain data related to the work submitted but were not included in the paper.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.