How Sophisticated Are Neural Networks Needed to Predict Long-Term Nonadiabatic Dynamics?

20 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Nonadiabatic dynamics is key for understanding solar energy conversion and photochemical processes in condensed phases. This often involves the non-Markovian dynamics of the reduced density matrix in open quantum systems, where knowledge of the system's prior states is necessary to predict its future behavior. In this study, we explore time-series machine learning methods for predicting long-time nonadiabatic dynamics based on short-time input data, comparing these methods with the physics-based transfer tensor method (TTM). To understand the impact of memory time on these approaches, we demonstrate that non-Markovian dynamics can be represented as a linear map within the Nakajima-Zwanzig generalized quantum master equation framework. We further propose a practical method to estimate the effective memory time, within a given tolerance, for reduced density matrix propagation. Our predictive models are applied to various physical systems, including spin-boson models, multi-state harmonic (MSH) models with Ohmic spectral densities and for a realistic organic photovoltaic system composed of a carotenoid-porphyrin-fullerene triad dissolved in tetrahydrofuran. Results indicate that the simple linear-mapping fully connected neural network (FCN) outperforms the more complicated nonlinear-mapping networks including the gated recurrent unit (GRU) and the convolutional neural network/long short-term memory (CNN-LSTM) in systems with short memory times, such as spin-boson and MSH models. Conversely, the nonlinear CNN-LSTM and GRU models yield higher accuracy in the triad MSH systems characterized by long memory times. These findings offer valuable insights into the role of effective memory time in non-Markovian quantum dynamics, providing practical guidance for the application of time-series machine learning models to complex chemical systems.

Keywords

neural network
non-Markovian effects
memory time
nonadiabatic dynamics
condensed phase matter
CNN-LSTM
open quantum system

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information for the manuscript including a brief description of the transfer tensor method, long short-term memory method, spin-boson model parameters, MSH model parameters, realistic triad spectral densities, effective time indicators in different systems, TTM result for five triad conformations, SFL results for Fenna-Metthews-Olson models and linear vibronic coupling models, FCN with nonlinear activation functions, the SFL performance test for different learning times.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.