A Near-Infrared-Absorbing Osmium(II) Complex as a Photosensitizer for Photodynamic Therapy inducing Immunogenic Cell Death

19 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Immunogenic cell death (ICD), which converts tumor cells into their own vaccine, plays a pivotal role in the development of novel anti-cancer therapies. Here, a small series of osmium(II) polypyridyl complexes were synthesized and their biological activity in the dark and upon light irradiation against various cancer cell lines was studied. The compound Os2 (bearing two 4,7-diphenyl-1,10-phenanthrolines and one substituted bipyridine ligand) was discovered to be the most effective photosensitizer (PS) for photodynamic therapy (PDT) of this series through the photogeneration of 1O2 and •OH. In addition, Os2 was found to exhibit promising toxicity upon near-infrared (NIR) irradiation under both normoxia and hypoxia. These observations indicate that this PS is working through a mixture of Type-I and Type-II mechanisms. More interestingly, upon 740 nm irradiation, Os2 can stimulate a strong ICD response both in vitro and in vivo. A comprehensive immune analysis showed that mice vaccinated with Os2-treated CT26-luc cells boosted the systemic specific adaptive immune responses, including the activation of CD8+ T cells and reprograming of macrophages, leading to effective inhibition of tumor growth. Os2 is, to the best of our knowledge, the first photoactive osmium-based complex inducing ICD.

Keywords

Adaptive Immunity
Immunogenic Cell Death
Metals in Medicine
Osmium
Photodynamic Therapy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.