Bifunctional photocatalysts display proximity-enhanced catalytic activity in metallaphotoredox C–O coupling

19 September 2024, Version 1

Abstract

Dual catalytic reactions may be made more effective through an improved integration of the catalytic cycles achieved using bifunctional catalysts. Herein we describe new bifunctional photocatalysts consisting of a photoactive donor-acceptor cyanoarene unit linked to a bipyridine ligand moiety that can bind transition metals. The bifunctional photocatalysts were synthesized in 3-5 steps form commercially available compounds and fully characterized in terms of photophysical properties, which are strongly affected by the type of linkage used (C vs. O) to connect the cyanoarene core to the ligand. Catalytic tests carried out in the Nicatalyzed C-O cross-coupling of alcohols to aryl bromides promoted by visible light have shown that the bifunctional systems are more active than the corresponding ‘dual catalytic systems’ (i.e., not covalently bound), taking advantage of the proximity between the two catalytic moieties (Ni-complex and photocatalyst). The best bifunctional dyes were tested with several alcohols and aryl halides, giving good yields at low catalytic loading (0.5-2 mol%).

Keywords

metallaphotoredox catalysis
bifunctional catalysis
donor-acceptor cyanoarenes
cross-coupling
visible light

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supplementary Figures, experimental methods, and spectral data for all new products are within the Supporting Information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.