Molecular Determinants of Optical Modulation in ssDNA-Carbon Nanotube Biosensors: Insights from Experimental and Computational Approaches

18 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-strand DNA functionalized single-walled carbon nanotubes (ssDNA-SWCNT) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood. In this study, we used a combination of experimental and computational approaches to show that ligand binding alone is not sufficient for optical modulation in this class of synthetic biosensors. Instead, the optical response that occurs after ligand binding is highly dependent on the chemical properties of the ligands, resembling mechanisms seen in activity-based biosensors. Specifically, we show that in ssDNA-SWCNT catecholamine sensors, the optical response correlates positively with electron density on the aryl motif, even when ligand binding affinities are similar. These findings could serve as a foundation for tuning the performance of existing sensors and guiding the development of new biosensors of this class.

Keywords

Fluorescence
Single Wall Carbon Nanotubes
DNA
Biosensor

Supplementary materials

Title
Description
Actions
Title
Supplementary Material
Description
Materials and Methods, and Supplementary Figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.