Abstract
We introduce an enhanced sampling algorithm to obtain converged free energy landscapes of molecular rare events, even when the collective variable (CV) used for biasing is not optimal. Our approach is a combination of the On-the-fly probability enhanced sampling (OPES) and its exploratory variant, OPES Explore (OPESe). We demonstrate the successful application of this combined algorithm on the two-dimensional Wolfe-Quapp potential, ligand-receptor binding in trypsin-benzamidine complex, and folding-unfolding of chignolin. Apart from computing accurate free energy profiles, we can discover additional metastable configurations not distinguished by the sub-optimal CV space. Moreover, we can control the trade-off between accuracy and convergence speed by varying the ratio of the barrier parameters in OPES and OPESe components. The improved efficiency and accuracy of free energy calculation, and the possibility of using generic and intuitive collective variables, make our proposed algorithm particularly promising for the simulation of complex molecular systems.
Supplementary materials
Title
supporting information
Description
Additional results, convergence plots, and bias deposition plots are provided in the supporting information.
Actions
Supplementary weblinks
Title
GitHub repo
Description
The input files for all simulations performed in this work are provided in the GitHub repository
Actions
View