Abstract
Heterogeneous catalysts dominate the chemical industry but typically feature diverse, incompletely defined active sites. Thus, describing structure-activity relationships, unlike homogeneous catalysts, remains challenging. In contrast, molecularly defined single-site heterogeneous catalysts (SSHCs), using appropriate tools, are poised to address these challenges and provide new avenues for catalysis research and development. The present study explores eco-friendly H2 production mediated by discrete MO2 sites supported on carbon nanohorns (CNHs) and active for alcohol dehydrogenation. While informative, detailed ensemble EXAFS/XANES, XPS, kinetic measurements, and DFT analysis alone cannot provide a full molecular picture of the reaction pathway. Here, using single-molecule atomic-resolution time-resolved electron microscopy (SMART-EM), we identify four key catalytic intermediates anchored to the CNHs and uncover a new reaction pathway involving alkoxide/hemiacetal equilibration and acetal oligomerization. These intermediates are identified solely by theory and SMART-EM, and this advance highlights the potential of SMART-EM to establish and verify mechanistic hypotheses in catalysis.