Phase-dependent polymerization isomerism in the coordination complexes of a flexible bis(β-diketonato) ligand

13 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

First prepared in the late 70s, the pro-ligand 1,3-bis(3,5-dioxo-1-hexyl)benzene (H2bdhb) contains two acetoacetyl terminations linked to a central 1,3-phenylene unit through dimethylene bridges. Since each termination can be either in diketonic or keto-enolic form, in organic solution it exists as a mixture of three spectroscopically resolvable tautomers. In the presence of pyridine, Co2+ and the bdhb2- dianion form a crystalline dimeric compound with formula [Co2(bdhb)2(py)4] (2) and a Co•••Co separation of >11 Å. Complex 2 contains two pseudo-octahedrally coordinated and non-interacting high-spin cobalt(II) ions (S = 3/2) displaying a large easy-plane anisotropy (D ~ 70 cm-1), as consistently indicated by magnetic measurements, X-band EPR spectra, and complete active space self-consistent field/N-electron valence state perturbation theory (CASSCF/NEVPT2) calculations. At cryogenic temperatures and in an applied static magnetic field, the compound shows detectably slow magnetic relaxation, which occurs through direct and Raman mechanisms. Combined mass spectrometry, UV-Vis, and 1H/2H NMR data, including a determination of molecular weight by diffusion ordered spectroscopy (DOSY), show that 2 loses its dimeric structure in dichloromethane solution and rearranges to monomeric high-spin [Co(bdhb)(py)x] species (x = 0, 1, or 2) with concomitant partial dissociation of the py ligands. The X-band EPR spectra in a frozen CH2Cl2/toluene matrix concurrently suggest a significant alteration of the coordination environment upon dissolution. These observations are fairly well reproduced by density functional theory (DFT) and CASSCF/NEVPT2 calculations on the low-lying conformers of each species, as provided by an extensive conformational search based on meta-dynamics simulations and semiempirical tight-binding methods. After the vanadyl analogue, compound 2 provides the second example of polymerization isomerism in the 1:1 adducts of bdhb2- with divalent metal ions.

Keywords

EPR
single-molecule magnets
DOSY
DFT
CASSCF/NEVPT2

Supplementary materials

Title
Description
Actions
Title
Supporting Information (1) to "Phase-dependent polymerization isomerism in the coordination complexes of a flexible bis(β-diketonato) ligand"
Description
Additional details, figures, and tables
Actions
Title
Supporting Information (2) to "Phase-dependent polymerization isomerism in the coordination complexes of a flexible bis(β-diketonato) ligand"
Description
Detailed thermochemical data calculated at the DFT B97-3c and TPSSh levels for the structures in Table S7
Actions
Title
Supporting Information (3) to "Phase-dependent polymerization isomerism in the coordination complexes of a flexible bis(β-diketonato) ligand"
Description
Final cartesian coordinates calculated at the DFT B97-3c level for the structures in Table S7
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.