Development of Selective Nanomolar Cyclic Peptide Ligands as GBA1 Enzyme Stabilisers

12 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The stabilisation of recombinant glycosidases by exogenous ligands, known as pharmacological chaperones (PC) or enzyme stabilisers, has recently garnered great clinical interest. This strategy can prevent enzyme degradation in the blood, reducing required dosages of recombinant enzyme and extending IV injection intervals, thereby reducing side effects, improving patient lifestyles and treatment costs. While this therapeutic approach has been successfully implemented for treating Pompe and Fabry diseases, clinical studies for Gaucher disease using chaperones alone or in combination with enzyme replacement therapy (ERT) have been limited, and no small molecule chaperones have yet been approved for this condition. Developing such therapies requires selective and effective reversible GBA1 ligands. Here, we describe the development of a new class of selective macrocyclic peptide GBA1 ligands using RaPID technology, and demonstrate their ability to bind and stabilise rhGBA1 in plasma at nanomolar concentrations. These cyclic peptides do not inhibit endogenous GBA1 in cells due to poor cell permeability but can stabilise extracellular rhGBA1 in plasma, presenting significant potential as a combinatorial ERT-pharmacological chaperone therapy for Gaucher disease.

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Electronic supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.