Fabrication of superhydrophilic membranes for oil-water separation: A life cycle assessment study

13 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Membrane-based technologies are widely used in oily wastewater treatment. This study selects two superhydrophilic ultrafiltration (UF) membranes (denoted M1 and M2) for oil-in-water emulsion separation and evaluates the environmental impact of membrane fabrication using life cycle assessment (LCA). Although the two membranes have similar separation performance, M1 exhibits ~40% lower environmental impacts than M2 in almost every category owing to its fewer modification steps, lower electricity use, and less solvent consumption. Electricity consumption, reactive-copolymer synthesis, and toxic-solvent use are identified as environmental hotspots in membrane fabrication. A sensitivity analysis of different energy sources reveals that coal-based electricity has the greatest environmental impact, while photovoltaic energy reduces the impact by up to 71%. Considering solvents, dimethylformamide (DMF) shows a slightly lower environmental impact than N-methyl-2-pyrrolidone (NMP).

Keywords

life cycle assessment
superhydrophilic membrane
oil-water separation
ultrafiltration
sustainability

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
The relevant synthetic procedures, life cycle inventories, and the equations for calculating the permeate flux (Jw), flux reduction (FR), and flux recovery ratio (FRR) are provided in the Supplementary Information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.