PathInHydro, a set of machine learning models to identify unbinding pathways of gas molecules in [NiFe] hydrogenases

09 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from the [NiFe] hydrogenases, using the unbinding trajectories of CO from Desulfovibrio fructosovorans [NiFe] hydrogenase as a training set. [NiFe] hydrogenases are receiving increasing attention in biotechnology due to their high efficiency in the generation of H2, which is considered by many to be the fuel of the future. However, some of these enzymes are sensitive to O2 and CO. Many efforts have been made to rectify this problem and generate air-stable enzymes by introducing mutations that selectively regulate the access of specific gas molecules to the catalytic site. Herein, we showcase the performance of PathInHydro for the identification of unbinding paths in different test sets, including various gas molecules and a different [NiFe] hydrogenase, which demonstrates its feasibility for the trajectory analysis of a diversity of gas molecules along enzymes with mutations and sequence differences. PathInHydro allows the user to skip time-consuming manual analysis and visual inspection, facilitating data analysis for MD simulations of ligand unbinding from [NiFe] hydrogenases. The codes and data sets are available online: https://github.com/FarzinSohraby/PathInHydro.

Keywords

[NiFe] hydrogenase
molecular dynamics simulation
machine learning
unbinding pathways

Supplementary materials

Title
Description
Actions
Title
Supporting Information of PathInHydro
Description
Supporting Information of the "PathInHydro, a set of machine learning models to identify unbinding pathways of gas molecules in [NiFe] hydrogenases" paper.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.