Capturing Dichotomic Solvent Behavior in Solute--Solvent Reactions with Neural Network Potentials

09 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Simulations of chemical reactivity in condensed phase systems represent an ongoing challenge in computational chemistry, where traditional quantum chemical approaches typically struggle with both the size of the system and the potential complexity of the reaction. Here, we introduce a workflow aimed at efficiently training neural network potentials (NNPs) to explore energy barriers in solution at the hybrid density functional theory level. The computational burden associated with training at the PBE0-D3(BJ) level is bypassed through the use of active and transfer learning techniques, whereas extensive sampling of the transition state region is accelerated by well-tempered metadynamics simulations using multiple time-step integration. These NNPs serve to explore a puzzling solute--solvent reactivity route involving the ring opening of N-enoxyphthalimide experimentally observed in methanol but not in 2,2,2-trifluoroethanol (TFE). This reaction represents a challenging example characterized by intricate hydrogen bonding networks and structurally ambiguous solvent-sensitive transition states. The methodology successfully delivers detailed free energy surfaces and relative energy barriers in quantitative agreement with experiment. These barriers are associated with an ensemble of transition states involving direct participation of up to five solvent molecules. While this picture contrasts with the single transition state structure assumed by current static models, no drastic qualitative difference is observed between the formed hydrogen bonding networks and the number of participating solvent molecules in methanol or TFE. The dichotomy between the two solvents thus essentially arises from an electronic effect (i.e., distinct nucleophilicity) and from the larger conformational entropy contributions in methanol. This example underscores the critical role dynamic simulations at the ab initio levels play in capturing the full complexity of solute-solvent interactions.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Information on path collective variables used in well-tempered MD simulations; CPU timings for PBE-D3(BJ) and PBE0-D3(BJ) computations in methanol and TFE solvents; Discussion on farthest point sampling used in transfer-learning; Final size and composition of the training databases; Assessments of the accuracy of the neural network potentials; Assessment of the convergence of the metadynamics simulations
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.