Leveraging Metal Complexes for Microsecond Lifetime-Based Chloride Sensing

02 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chloride is the most abundant anion in cell physiology and plays many critical roles in maintaining cellular homeostasis. However, current chloride sensors are rare, with inherent sensitivity in their emission properties, such as vulnerability to pH changes or short emission lifetimes. These limitations restrict their application in aqueous media and imaging. In this work, we employed a transition metal complex bearing pyridinium as a recognition unit for chloride and studied the phosphorescence emission properties. Iridium(III) complex 1 was synthesized as an alternative chloride-sensitive luminophore. The conjugable design also allows customization for desired applications. Complex 1 exhibited high sensitivity and selectivity in chloride sensing across different physiological environments, regardless of pH fluctuation and ionic strength. Additionally, complex 1 featured a long microsecond emission lifetime. The chloride sensing ability of complex 1 can be measured through both luminescence intensity and long-lived phosphorescent lifetime simultaneously, providing an alternative potential route for chloride imaging.

Keywords

Chloride
chloride sensing
iridium complex

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.