Large language models design sequence-defined macromolecules via evolutionary optimization

04 September 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We demonstrate the ability of a large language model to perform evolutionary optimization for materials discovery. Anthropic's Claude 3.5 model outperforms an active learning scheme with handcrafted surrogate models and an evolutionary algorithm in selecting monomer sequences to produce targeted morphologies in macromolecular self-assembly. Utilizing pre-trained language models can potentially reduce the need for hyperparameter tuning while offering new capabilities such as self-reflection. The model performs this task effectively with or without context about the task itself, but domain-specific context sometimes results in faster convergence to good solutions. Furthermore, when this context is withheld, the model infers an approximate notion of the task (e.g., calling it a protein folding problem). This work provides evidence of Claude 3.5's ability to act as an evolutionary optimizer, a recently discovered emergent behavior of large language models, and demonstrates a practical use case in the study and design of soft materials.

Keywords

large language models

Supplementary materials

Title
Description
Actions
Title
Supplementary information for “Large language models design sequence-defined macromolecules via evolutionary optimization”
Description
Individual replicas for Fig. 2b-c are shown in the SI. We also report MD validation for the sequences selected in one replica of the seeded scientific LLM rollout.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.