Oxygen-Powered Sustainable FePO4 Preparation Routines for Sodium Metal Batteries with Li Acetate Recovery

30 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Triphylite NaFePO4 emerges as a promising solution for sodium secondary batteries due to its abundant constituent elements and high energy density, making it attractive for sustainable energy storage applications. However, the direct synthesis of triphylite NaFePO4 is hindered by its thermal metastability. In this study, we propose an oxygen-powered sustainable production method for heterosite FePO4, the desodiated form of triphylite NaFePO4, derived from LiFePO4. Oxygen gas serves as the oxidizing agent for delithiating LiFePO4, and a closed-loop process has been successfully established to enable lithium recycling, which is essential for achieving cost-effective FePO4 production. Furthermore, we propose a high energy density metal cell configuration that utilizes the charged state of sodium metal batteries (Na/FePO4 configuration), aiming to improve the cyclability of Na-metal-free cells while maintaining the high energy density, thereby addressing a significant challenge in sodium metal battery technology.

Keywords

Sodium metal batteries
FePO4
olivine
triphylite
sustainable delithiation

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.