Formate Salt as a Bifunctional Reagent for Hydroxylation and Carbonylation Reactions Under Photochemically Driven Nickel Catalysis

23 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study, we disclose for the first time that formate salt can be used as a bifunctional reagent for the synthesis of phenol derivatives and as a CO source for carbonylative cross-coupling processes using the COware gas reactor under activation free conditions. Key to this success is the in-situ synthesis of aryl formate via an unprecedented nickel/organophotocatalyst system under blue LED irradiation. This developed system demonstrated high applicability to various aryl iodide substrates for synthesizing phenol derivatives. Moreover, the generated CO could be utilized in a range of carbonylative C-heteroatom and C-C processes. Notably, commercially available H13COONa salt can serve as a bifunctional reagent for both synthesizing phenols and generating 13CO.

Keywords

Formic Acid • Carbonylation • Hydroxylation • Photocatalysis • COware

Supplementary materials

Title
Description
Actions
Title
ESI
Description
ESI
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.