Abstract
Many water-soluble polymers undergo phase separation above their lower critical solution temperature (LCST) in aqueous solutions. Generally, the LCST is controlled via the polymer-solvent interactions, which in turn are highly structure dependent and typically tuned via the polymer side chain. For example, the LCST for the poly(2-oxazoline) family can be tuned via the length of the polymer side chain. In particular, the LCST of poly(2-ethyl-2-oxazoline) varies between 60-100 °C, depending on its molar mass, polymer architecture and concentration. Here, we introduce LCST adjustment via modification of the carbonyl of the amide moiety of poly(2-oxazoline)s. We introduce poly(2-ethyl-2-oxazoline-co-N-propiothioacetyl ethylene imine), synthesized from poly(2-ethyl-2-oxazoline) using Lawesson’s reagent. The degree of thionation of the polymers was varied and characterized using spectroscopic methods and elemental analysis. While the glass transition temperatures of the copolymers increase with increasing thionation degree, decomposition temperatures decrease. Interestingly, polymers with less than 20% thionation degree were soluble in water with LCST behavior. The cloud point temperatures decrease with increasing thionation degree, due to weaker hydrogen bonding ability of thioamides and decreased polarity.
Supplementary materials
Title
Supporting information
Description
The supporting information contains Tables S1-S3 and Figures S1-S19.
Actions