Annulation Producing Diverse Heterocycles Promoted by Cobalt Hydride

12 August 2024, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study demonstrates the efficient synthesis of various heterocycles using the metal hydrogen atom transfer (MHAT)/ radical-polar crossover (RPC) method, emphasizing its versatility under mild conditions with high functional group tolerance. By distinguishing between cyclization and annulation, we underscore the complexity and efficiency of this approach in constructing intricate molecular architectures. Notably, the incorporation of an acetone solvent in the formation of cyclic acetal dioxanes from homoallylic alcohols reveals a novel annulation mechanism. Extensive substrate scope analysis and density functional theory calculations provide insights into reaction pathways, highlighting the critical role of cationic alkylcobalt(IV) intermediates and collidine in product selectivity. This study elucidates the mechanisms of the MHAT/RPC method and showcases its potential as a robust alternative to conventional synthetic strategies.

Keywords

annulation
cyclic acetal
cobalt
alkene
heterocycles

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
experimental procedure compound data DFT study NMR chart
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.