Orthogonal Phase Transfer of Oppositely Charged FeII4L6 Cages

23 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Coordination cages and their encapsulated cargo can be manoeuvred between immiscible liquid layers in a process referred to as phase transfer. Among the stimuli reported to drive phase transfer, counterion exchange is the most widespread. This method exploits the principle that counterions contribute strongly to the solubility preferences of coordination cages, and involves exchanging hydrophilic and hydrophobic counterions. Nevertheless, phase transfer of anionic cages remains relatively unexplored, as does selective phase transfer of individual cages from mixtures. Here we compare the phase transfer behaviour of two FeII4L6 cages with the same size and geometry, but with opposite charges. As such, this study presents a rare example wherein an anionic cage undergoes phase transfer upon countercation exchange. We then combine these two cages, and demonstrate that their quantitative separation can be achieved by inducing selective phase transfer of either cage. These results represent unprecedented control over the movement of coordination cages between different physical compartments, and are anticipated to inform the development of next-generation supramolecular systems.

Keywords

supramolecular chemistry
phase transfer
ion exchange

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information including NMR, ESI-MS, UV-Vis, DLS, and crystallographic data.
Actions
Title
CIF for cage 2
Description
CIF for cage 2
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.