MolAnchor – Explaining Compound Predictions Based on Substructures

08 August 2024, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In medicinal chemistry, the impact of machine learning remains limited if predictions are not understood, which often precludes experimental follow-up. Therefore, chemically intuitive approaches that aid in model understanding and interpretation at the molecular level of detail are sought after. While feature attribution methods quantifying feature importance for model decisions are widely used in many areas, they must typically be combined with visualization techniques, if possible, to render the results accessible from a chemical viewpoint. On the other hand, there are approaches such as counterfactuals that yield closely related chemical structures with different prediction outcomes, providing direct access to structural features that critically influence model decisions. Herein, we introduce another approach designed to rationalize chemical predictions based on molecular structure. Therefore, we adapt principles underlying the anchor concept from explainable artificial intelligence (XAI) and alter them for molecular machine learning. The resulting method, termed MolAnchor, systematically identifies substructures in test compounds that determine property predictions, thus ensuring chemical interpretability. The MolAnchor methodology is made freely to the medicinal chemistry community available as a part of our study.

Keywords

Molecular machine learning
model interpretation
explainable artificial intelligence
anchors
molecular fragments

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.